Nobel committee completely agreed with him.
Quantum theory, born out of the struggle to reconcile light and matter, was fundamentally at odds with all science that had gone before. Physics, pre-1900, was basically a recipe for predicting the future with absolute certainty. If a planet is in a particular place now, in a day’s time it will have moved to another place, which can be predicted with 100 per cent confidence by using Newton’s laws of motion and the law of gravity. Contrast this with an atom flying through space. Nothing is knowable with certainty. All we can ever predict is its probable path, its probable final position.
Whereas quantum is based on uncertainty, the rest of physics is based on certainty. To say this is a problem for physicists is a bit of an understatement! “Physics has given up on the problem of trying to predict what would happen in a given circumstance,” said Richard Feynman. “We can only predict the odds.”
All is not lost, however. If the microworld were totally unpredictable, it would be a realm of total chaos. But things are not this bad. Although what atoms and their like get up to is intrinsically unpredictable, it turns out that the unpredictability is at least predictable!
PREDICTING THE UNPREDICTABILITY
Think of the window again. Each photon has a 95 per cent chance of being transmitted and a 5 per cent chance of being reflected. But what determines these probabilities?
Well, the two different pictures of light—as a particle and as a wave—must produce the same outcome. If half the wave goes through and half is reflected, the only way to reconcile the wave and particle pictures is if each individual particle of light has a 50 per centprobability of being transmitted and a 50 per cent probability of being reflected. Similarly, if 95 per cent of the wave is transmitted and 5 per cent is reflected, the corresponding probabilities for the transmission and reflection of individual photons must be 95 per cent and 5 per cent.
To get agreement between the two pictures of light, the particlelike aspect of light must somehow be “informed” about how to behave by its wavelike aspect. In other words, in the microscopic domain, waves do not simply behave like particles; those particles behave like waves as well! There is perfect symmetry. In fact, in a sense this statement is all you need to know about quantum theory (apart from a few details). Everything else follows unavoidably. All the weirdness, all the amazing richness of the microscopic world, is a direct consequence of this wave-particle “duality” of the basic building blocks of reality.
But how exactly does light’s wavelike aspect inform its particle-like aspect about how to behave? This is not an easy question to answer.
Light reveals itself either as a stream of particles or as a wave. We never see both sides of the coin at the same time. So when we observe light as a stream of particles, there is no wave in existence to inform those particles about how to behave. Physicists therefore have a problem in explaining the fact that photons do things—for instance, fly through windows—as if directed by a wave.
They solve the problem in a peculiar way. In the absence of a real wave, they imagine an abstract wave—a mathematical wave. If this sounds ludicrous, this was pretty much the reaction of physicists when the idea was first proposed by the Austrian physicist Erwin Schrödinger in the 1920s. Schrödinger imagined an abstract mathematical wave that spread through space, encountering obstacles and being reflected and transmitted, just like a water wave spreading on a pond. In places where the height of the wave was large, the probability of finding a particle was highest, and in locations where it was small, the probability was lowest. In this way Schrödinger’s wave ofprobability christened the wave function, informed a particle what to do, and not just a photon—any microscopic particle, from an atom to a