Quantum Theory Cannot Hurt You

Quantum Theory Cannot Hurt You Read Online Free PDF

Book: Quantum Theory Cannot Hurt You Read Online Free PDF
Author: Marcus Chown
constituent of an atom like an electron.
    There is a subtlety here. Physicists could make Schrödinger’s picture accord with reality only if the probability of finding a particle at any point was related to the square of the height of the probability wave at that point. In other words, if the probability wave at some point in space is twice as high as it is at another point in space, the particle is four times as likely to be found there than at the other place.
    The fact that it is the square of the probability wave and not the probability wave itself that has real physical meaning to this day causes debate about whether the wave is a real thing lurking beneath the skin of the world or just a convenient mathematical device for calculating things. Most but not all people favour the latter.
    The probability wave is crucially important because it makes a connection between the wavelike aspect of matter and familiar waves of all kinds, from water waves to sound waves to earthquake waves. All obey a so-called wave equation. This describes how they ripple through space and allows physicists to predict the wave height at any location at any time. Schrödinger’s great triumph was to find the wave equation that described the behaviour of the probability wave of atoms and their like.
    By using the Schrödinger equation, it is possible to determine the probability of finding a particle at any location in space at any time. For instance, it can be used to describe photons impinging on the obstacle of a windowpane and to predict the 95 per cent probability of finding one on the far side of the pane. In fact, the Schrödinger equation can be used to predict the probability of any particle, be it a photon or an atom, doing just about anything. It provides the crucial bridge to the microscopic world, allowing physicists to predict everything that happens there—if not with 100 per cent certainty, at least with predictable uncertainty!
    Where is all this talk of probability waves leading? Well, the fact that waves behave like particles in the microscopic world leads unavoidably to the realisation that the microscopic world dances to an entirely different tune than that of the everyday world. It is governed by random unpredictability. This in itself was a shocking, confidence-draining blow to physicists and their belief in a predictable, clockwork universe. But this, it turns out, is only the beginning. Nature had many more shocks in store. The fact that waves not only behave as particles but also that those particles behave as waves leads to the realisation that all the things that familiar waves, like water waves and sound waves, can do, so too can the probability waves that inform the behaviour of atoms, photons, and their kin.
    So what? Well, waves can do an awful lot of different things. And each of these things turns out to have a semi-miraculous consequence in the microscopic world. The most straightforward thing waves can do is exist as superpositions. Remarkably, this enables an atom to be in two places at once, the equivalent of you being in London and New York at the same time.
    1 Another interesting characteristic of the photoelectric effect is that no electrons at all are emitted by the metal if it is illuminated by light with a wavelength—a measure of the distance between successive wave crests—above a certain threshold. This, as Einstein realised, is because photons of light have an energy that goes down with increasing wavelength. And below a certain wavelength the photons have insufficient energy to kick an electron out of the metal.

3
T HE S CHIZOPHRENIC A TOM
    H OW AN ATOM CAN BE IN MANY PLACES AT ONCE AND DO MANY THINGS AT ONCE
    If you imagine the difference between an abacus and the world’s fastest supercomputer, you would still not have the barest inkling of how much more powerful a quantum computer could be compared with the computers we have today.
    Julian Brown
    It’s 2041. A boy sits at a computer in his
Read Online Free Pdf

Similar Books

What's a Boy to Do

Diane Adams

Fingersmith

Sarah Waters

Tell Me Your Dreams

Sidney Sheldon

Lehrter Station

David Downing

The Twin

Gerbrand Bakker

The Teratologist

Edward Lee

A Latent Dark

Martin Kee

King of the Godfathers

Anthony Destefano