uses the following analogy: “Think, for a moment, of a cheetah, a sleek, beautiful animal, one of the fastest on earth, which roams freely on the savannas of Africa. In its natural habitat, it is a magnificent animal, almost a work of art, unsurpassed in speed or grace by any other animal. Now,” he continues,
think of a cheetah that has been captured and thrown into a miserable cage in a zoo. It has lost its original grace and beauty, and is put on display for our amusement. We see only the broken spirit of the cheetah in the cage, not its original power and elegance. The cheetah can be compared to the laws of physics, which are beautiful in their natural setting. The natural habitat of the laws of physics is higher-dimensional space-time. However, we can only measure the laws of physics when they have been broken and placed on display in a cage, which is our three-dimensional laboratory. We only see the cheetah when its grace and beauty have been stripped away. 2
For decades, physicists have wondered why the four forces of nature appear to be so fragmented—why the “cheetah” looks so pitiful and broken in his cage. The fundamental reason why these four forces seem so dissimilar, notes Freund, is that we have been observing the “caged cheetah.” Our three-dimensional laboratories are sterile zoo cages for the laws of physics. But when we formulate the laws in higher-dimensional space-time, their natural habitat, we see their true brilliance and power; the laws become simple and powerful. The revolution now sweeping over physics is the realization that the natural home for the cheetah may be hyperspace.
To illustrate how adding a higher dimension can make things simpler, imagine how major wars were fought by ancient Rome. The great Roman wars, often involving many smaller battlefields, were invariably fought with great confusion, with rumors and misinformation pouring in on both sides from many different directions. With battles raging on several fronts, Roman generals were often operating blind. Rome won its battles more from brute strength than from the elegance of its strategies. That is why one of the first principles of warfare is to seize the high ground—that is, to go
up
into the third dimension, above the two-dimensional battlefield. From the vantage point of a large hill with a panoramic view of the battlefield, the chaos of war suddenly becomes vastly reduced. In other words, viewed from the third dimension (that is, from the top of the hill), the confusion of the smaller battlefields becomes integrated into a coherent single picture.
Another application of this principle—that nature becomes simpler when expressed in higher dimensions—is the central idea behind Einstein’s special theory of relativity. Einstein revealed time to be the fourth dimension, and he showed that space and time could conveniently be unified in a four-dimensional theory. This, in turn, inevitably led to the unification of all physical quantities measured by space and time, such as matter and energy. He then found the precise mathematical expression for this unity between matter and energy:
E
=
mc 2
, perhaps the most celebrated of all scientific equations. *
To appreciate the enormous power of this unification, let us now describe the four fundamental forces, emphasizing how different they are, and how higher dimensions may give us a unifying formalism. Over the past 2,000 years, scientists have discovered that all phenomena in our universe can be reduced to four forces, which at first bear no resemblance to one another.
The Electromagnetic Force
The electromagnetic force takes a variety of forms, including electricity, magnetism, and light itself. The electromagnetic force lights our cities, fills the air with music from radios and stereos, entertains us with television, reduces housework with electrical appliances, heats our food withmicrowaves, tracks our planes and space probes with radar, and electrifies our