power plants. More recently, the power of the electromagnetic force has been used in electronic computers (which have revolutionized the office, home, school, and military) and in lasers (which have introduced new vistas in communications, surgery, compact disks, advanced Pentagon weaponry, and even the check-out stands in groceries). More than half the gross national product of the earth, representing the accumulated wealth of our planet, depends in some way on the electromagnetic force.
The Strong Nuclear Force
The strong nuclear force provides the energy that fuels the stars; it makes the stars shine and creates the brilliant, life-giving rays of the sun. If the strong force suddenly vanished, the sun would darken, ending all life on earth. In fact, some scientists believe that the dinosaurs were driven to extinction 65 million years ago when debris from a comet impact was blown high into the atmosphere, darkening the earth and causing the temperature around the planet to plummet. Ironically, it is also the strong nuclear force that may one day take back the gift of life. Unleashed in the hydrogen bomb, the strong nuclear force could one day end all life on earth.
The Weak Nuclear Force
The weak nuclear force governs certain forms of radioactive decay. Because radioactive materials emit heat when they decay or break apart, the weak nuclear force contributes to heating the radioactive rock deep within the earth’s interior. This heat, in turn, contributes to the heat that drives the volcanoes, the rare but powerful eruptions of molten rock that reach the earth’s surface. The weak and electromagnetic forces are also exploited to treat serious diseases: Radioactive iodine is used to kill tumors of the thyroid gland and fight certain forms of cancer. The force of radioactive decay can also be deadly: It wreaked havoc at Three Mile Island and Chernobyl; it also creates radioactive waste, the inevitable by-product of nuclear weapons production and commercial nuclear power plants, which may remain harmful for millions of years.
The Gravitational Force
The gravitational force keeps the earth and the planets in their orbits and binds the galaxy. Without the gravitational force of the earth, wewould be flung into space like rag dolls by the spin of the earth. The air we breathe would be quickly diffused into space, causing us to asphyxiate and making life on earth impossible. Without the gravitational force of the sun, all the planets, including the earth, would be flung from the solar system into the cold reaches of deep space, where sunlight is too dim to support life. In fact, without the gravitational force, the sun itself would explode. The sun is the result of a delicate balancing act between the force of gravity, which tends to crush the star, and the nuclear force, which tends to blast the sun apart. Without gravity, the sun would detonate like trillions upon trillions of hydrogen bombs.
The central challenge of theoretical physics today is to unify these four forces into a single force. Beginning with Einstein, the giants of twentieth-century physics have tried and failed to find such a unifying scheme. However, the answer that eluded Einstein for the last 30 years of his life may lie in hyperspace.
The Quest for Unification
Einstein once said, “Nature shows us only the tail of the lion. But I do not doubt that the lion belongs to it even though he cannot at once reveal himself because of his enormous size.” 3 If Einstein is correct, then perhaps these four forces are the “tail of the lion,” and the “lion” itself is higher-dimensional space-time. This idea has fueled the hope that the physical laws of the universe, whose consequences fill entire library walls with books densely packed with tables and graphs, may one day be explained by a single equation.
Central to this revolutionary perspective on the universe is the realization that higher-dimensional
geometry
may be the ultimate source