times larger it would have to be turning faster than the velocity of light. One did not have to be an Einstein, or even to know the velocity of light, to intuit that
that
was too fast—a point that had begun to worry cosmologists by the sixteenth century. All geocentric, immobile-earth cosmologies tended to inhibit appreciation of the true dimensions of space.
To set the earth in motion would be to expand the universe, a step that seemed both radical and counterintuitive. The earth does not
feel
as if it is spinning, nor does the observational evidence suggest any such thing: Were the earth turning on its axis, Athens and all its citizens would be hurtling eastward at a thousand miles per hour. If so, the Greeks reasoned, gale-force easterlies ought constantly to sweep the world, and broad jumpers in the Olympics would land in the stands well to the west of their jumping-off points. As no such effects are observed, most of the Greeks concluded that the earth does not move.
The problem was that the Greeks had only half the concept of inertia. They understood that objects at rest tend to remain at rest—a context we retain today when we speak of an “inert object” and mean that it is immobile—but they did not realize that objects in motion, including broad jumpers and the earth’s atmosphere, tend to remain in motion. This more complete conception of inertia would not be achieved until the days of Galileo and Newton. (Even with amendments by Einstein and intimations of others by the developing superunified theories, plenty of mystery remains in theidea of inertia today.) Its absence was a liability for the ancient Greeks, but it was not the same thing as the religious prejudice to which many schoolbooks still ascribe the motives of rational and irrational geocentrists alike.
If one goes further and imagines that the earth not only spins on its axis but orbits the sun, then one’s estimation of the dimensions of the cosmos must be enlarged even more. The reason for this is that if the earth orbits the sun, then it must alternately approach and withdraw from one side of the sphere of stars—just as, say, a child riding a merry-go-round first approaches and then recedes from the gold ring. If the stellar sphere were small, the differing distance would show up as an annual change in the apparent brightness of stars along the zodiac; in summer, for instance, when the earth is on the side of its orbit closer to the star Spica, its proximity would make Spica look brighter than it does in winter, when the earth is on the far side of its orbit. As no such phenomenon is observed, the stars must be
very
far away, if indeed the earth orbits the sun.
The astonishing thing, then, given their limited understanding of physics and astronomy, is not that the Greeks thought of the universe in geocentric terms, but that they did not
all
think of it that way. The great exception was Aristarchus, whose heliocentric cosmology predated that of Copernicus by some seventeen hundred years.
Aristarchus came from Samos, a wooded island near the coast of Asia Minor where Pythagoras, three centuries earlier, had first proclaimed that all is number. A student of Strato of Lampsacus, the head of the Peripatetic school founded by Aristotle, Aristarchus was a skilled geometer who had a taste for the third dimension, and he drew, in his mind’s eye, vast geometrical figures that stretched not only across the sky but out into the depths of space as well. While still a young man he published a book suggesting that the sun was nineteen times the size and distance of the moon; his conclusions were quantitatively erroneous (the sun actually is four hundred times larger and farther away than the moon) but his methods were sound.
It may have been this work that first led Aristarchus to contemplate a sun-centered cosmos: Having concluded that the sun was larger than the earth, he would have found that for a giant sun to orbit a smaller earth was