Coming of Age in the Milky Way
intuitively as absurd as to imagine thata hammer thrower could swing a hammer a hundred times his own weight. The evolution of Aristarchus’ theory cannot be verified, however, for his book proposing the heliocentric theory has been lost. We know of it from a paper written in about 212 B.C. by Archimedes the geometer.

     
    In a small, heliocentric universe, the earth would be much closer to a summer star like Spica in summer than in winter, making Spica’s brightness vary annually. As there is no observable annual variation in the brightness of such stars, Aristarchus concluded that the stars are extremely distant from the earth.
     
    Archimedes’ paper was titled “The Sand Reckoner,” and its purpose was to demonstrate that a system of mathematical notation he had developed was effective in dealing with large numbers. To make the demonstration vivid, Archimedes wanted to show that he could calculate even such a huge figure as the number of grains of sand it would take to fill the universe. The paper, addressed tohis friend and kinsman King Gelon II of Syracuse, was intended as but a royal entertainment or a piece of popular science writing. What makes it vitally important today is that Archimedes, wanting to make the numbers as large as possible, based his calculations on the dimensions of the most colossal universe he had ever heard of—the universe according to the novel theory of Aristarchus of Samos.
    Archimedes, a man of strong opinions, had a distaste for loose talk of “infinity,” and he begins “The Sand Reckoner” by assuring King Gelon that the number of grains of sand on the beaches of the world, though very large, is not infinite, but can, instead, be both estimated and expressed:
    I will try to show you, by means of geometrical proofs, which you will be able to follow, that, of the numbers named by me … some exceed not only the number of the mass of sand equal in magnitude to the earth filled up in the way described, but also that of a mass equal in magnitude to the universe. 1
     
    Continuing in this vein, Archimedes adds that he will calculate how many grains of sand would be required to fill, not the relatively cramped universe envisioned in the traditional cosmologies, but the much larger universe depicted in the new theory of Aristarchus:
    Aristarchus of Samos brought out a book consisting of certain hypotheses, in which it appears, as a consequence of the assumptions made, that the universe is many times greater [in size] than that now so called. His hypotheses are that the fixed stars and the sun remain unmoved, that the earth revolves about the sun in the circumference of a circle, the sun lying in the middle of the orbit, and that the sphere of the fixed stars, situated about the same center as the sun, is so great that the circle in which he supposes the earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface. 2
     
    Here Archimedes has a problem, for Aristarchus is being hyperbolic when he says that the size of the universe is as much larger than the orbit of the sun as is the circumference of a sphere to its center. “It is easy to see,” Archimedes notes, “that this is impossible;for, since the center of the sphere has no magnitude, we cannot conceive it to bear any ratio whatever to the surface of the sphere.” 3 To plug hard numbers into Aristarchus’ model, Archimedes therefore takes Aristarchus to mean that the ratio of the size of the earth to the size of the universe is comparable to that of the orbit of the earth compared to the sphere of stars. Now he can calculate. Incorporating contemporary estimates of astronomical distances, Archimedes derives a distance to the sphere of stars of, in modern terminology, about six trillion miles, or one light-year. *
    This was a stupendous result for its day—a heliocentric universe with a radius more than a hundred thousand times larger than that of the Ptolemaic
Read Online Free Pdf

Similar Books

Overtime

David Skuy

Sinful Cravings

Samantha Holt

She Loves Me Not

Wendy Corsi Staub

Pearls for Jimmy

Maureen Gill

Roman Summer

Jane Arbor