point on, chemical manufacturers all over the world would follow the same strategy for getting rid of their waste. They would dump on their own property first, since that was always the cheapest alternative, and then if the authorities foreclosed that option, they would instead discharge their liquid waste into the largest and fastest-flowing body of water available. It was no coincidence that the great chemical companies of Switzerland and Germany built many of their factories beside one of the widest and swiftest rivers in Europe and that Perkin made sure that his much smaller factory was next to a canal that led to the Thames. 15
Even the mighty Rhine, however, could not sufficiently dilute all the hydrocarbon waste that the dye companies were pouring into it. In 1882, a chemistry professor at the University of Basel placed fish in cages at various points in the Rhine to prove that they were being harmed by dye waste—perhaps the first example of a controlled experiment involving wildlife and industrial pollution. 16 By the 1890s, Geigy, Bayer, Ciba, BASF, and others were dumping benzene, toluene, naphthalene, nitrobenzene, and other toxic distillates of coal tar into the river at volumes that would have made Müller-Pack blush. Meanwhile, in the countryside just outside of Basel, the neighbors of Ciba’s huge dye works continued to complain bitterly about the “disagreeable steam or vapours escaping into the atmosphere” that had destroyed the gardens of their country homes. No one was in a position to make the companies stop. The chemical industry was a crucial component of rising German power and Swiss prosperity. When hundreds of Basel residents downwind from Ciba’s smokestacks tried toblock a planned factory expansion in 1900, their protest was rejected on the grounds that “pure Alpine air could not be expected in an industrial area.” 17
The rapidly expanding factories, meanwhile, were becoming extremely dangerous places to work. They were booming in every sense of the word, since explosions were a constant threat. So many powerful acids and volatile solvents were used in the dye manufacturing process that Ciba engineers developed an ingenious potential solution: the first wearable respirator, a breathing apparatus designed to protect laborers as they mixed vaporous chemicals by hand. The device was so hot, heavy, and bulky, however, that workers shunned it. Instead, most laborers simply held cloths over their faces—an action that provided almost no protection. Supervisors generally did not insist that the respirators be used because their employees worked much faster without them. Washup rules also went unenforced; not only did Basel’s creeks turn bright blue and red with dumped dye waste, the city’s aniline workers added to the polychromatic spectacle by walking the streets “with their hands and sometimes faces and necks colored in all hues of the spectrum.” 18 Accidental poisonings were frequent, with the most common symptoms being convulsions, bloody urine, and skin discoloration. As a result, extremely high rates of worker attrition were considered normal in the dye industry, with one American commentator noting in 1925 that superintendents in aniline factories “considered that their duty had been properly performed if they were able to get out the required production without more than ten percent of their men continuously on leave and if such men as were left were able to at least stand up.” 19
Even more ominously, physicians were noticing a new kind of illness they called “aniline tumors.” The man who coined the term was a Frankfurt surgeon named Ludwig Wilhelm Carl Rehn. In 1895, he diagnosed bladder cancer in three of the forty-five dye workers he examined who were engaged in the production of fuchsine magenta. By 1906, he had documented thirty-eight similarly stricken workers in Frankfurt, and other doctors in Switzerland and Germany were making similar observations. Within four