that could pick up a grape without breaking it, which requires very fine haptic sensing; lift a raisin without dropping it, which requires fine motor control and wrist, elbow, and shoulder flexibility; be entirely self-contained, including the power supply; weigh less than nine pounds; and fit on a 50th-percentile female frame, 32 inches from the long finger to the shoulder. And even better, I had to finish the job in two years. So, you know, I told them they were completely nuts.”
But Kamen’s conscience got the better of him, and he took the job. He completed the beta version right on schedule, naming the device the Luke Arm after that fabled
Star Wars
amputee, Luke Skywalker. (The Luke Arm is now undergoing clinical trials.)
“It was an exciting time,” says Rozelle. “There was finally some hope for real progress.”
7.
In 2007, Herr finished the beta version of the BiOM, as his bionic ankle is now known. Five computers and twelve sensors give the BiOM sufficient intelligence to read and react to differences in terrain and slope — meaning it’s the first robotic foot that can be used to walk uphill. Unlike traditional prosthetic devices, to which a person must adapt his walking style, the BiOM gathers gait data to attune itself to the wearer. This is what the Bluetooth is for: The world’s first true bionic limb is programmable by means of an Android phone.
Time
named the BiOM one of the best inventions of 2007. Other accolades followed, but there was significantly more work to be done before the device was ready for the general public. “The dominant challenge was durability,” says Herr. “I was buildinga prosthetic leg. It’s a transportation device. It can’t fail. But if it’s going to last five years, then it has to be capable of taking six million steps — because that’s how many the average person takes in that period. Look, there’s nothing like the human body. There are versions that can walk without failure for eighty years. I was trying for just five — but this was not a trivial problem in robotics.”
By late 2010 Herr felt the BiOM was durable enough for human trials. Because the military was funding much of the work, soldiers were the obvious crash-test dummies. Plus, Rozelle had challenged Herr to build a device for guys like him — so who better to try it out?
In January 2011 he got his shot. Rozelle became the world’s second official bionic man (one other soldier had been fitted before him). As soon as the BiOM was attached, Rozelle went in search of the toughest terrain he could find. “The prosthetists were so happy,” he says. “They were used to seeing guys just walk up and down the hallway. I went outside and found a hill to walk up and down at an angle. It was pretty amazing. I immediately felt I had my real foot back.”
Over the next year, Rozelle and a couple dozen other veteran amputees put the BiOM through its paces. “It was an incredible process,” recalls Tim McCarthy, the CEO of iWalk, the company that builds the BiOM. “Over the past twenty years I’ve introduced dozens of new products — none like this. People put on the BiOM and burst into tears.” Herr had seen it too: “Grizzled truck drivers, guys who haven’t shed a tear in twenty years, just sobbing.”
But the biggest deal — what many think the BiOM’s real legacy will be — is a massive reduction in health care costs. With less pain and exhaustion, amputees don’t stop moving around. They lose weight (tens of pounds), reduce their pain meds (some by up to two-thirds), and return to work (for the first time in years). The real proof is that the device costs about $60,000, yet workers’ compensation agents are requesting it, feeling that the savings in medical costs later will more than cover the high price tag. “Beyondchanging lives,” says McCarthy, “this has a huge economic benefit. Over time, it’s going to save millions of dollars.”
Herr, meanwhile, isn’t close to