year—climatologists
have determined that 1816 was the second-coldest year in the Northern Hemisphere since
1400, surpassed only by 1601, following the eruption of Huaynaputina in Peru. Even
as the aerosol began to settle out of the atmosphere through gravity, it would take
years for land and ocean temperatures to return to normal. And so 1817 was the fifth
coldest, 1818 the twenty-second coldest, and 1819 the twenty-ninth coldest year in
the Northern Hemisphere since 1400.
In the meantime, the aerosol cloud had produced other noticeable optical phenomena,
most notably a series of spectacular red, purple, and orange sunsets in London in
the summer and autumn of 1815. Observers noted repeatedly that “the sky exhibited
in places a fire,” with “crimson cirri” [high-altitude cirrus clouds, composed of
fine ice particles] and “much redness in the twilight.” “The evening twilight has
been generally coloured of late,” wrote one contemporary, “and at times streaked with
converging shadows, the origin of which could not be traced to clouds intercepting
the light.” On several particularly unsettled September nights, the storm clouds continued
to glow various shades of red for half an hour after sunset.
Sunsets typically appear yellow, orange, or red because atmospheric gases scatter
blue light more effectively than other colors, skewing the visible-light spectrum
toward red. The effect is even more pronounced when the sun is low on the horizon,
since its light must pass through a thicker layer of the atmosphere to reach the ground,
resulting in less blue and more red light.
Stratospheric ash, dust, and soot particles from volcanic eruptions—or from pollution
or fires—enhance this atmospheric scattering effect, leading to brilliant red sunsets.
After the sun passes below the horizon and light no longer reaches the surface, some
sunlight still passes through the upper portions of the atmosphere. Aerosol veils
reflect this sunlight toward Earth, giving the colorful postsunset glows reported
in London. So exceptional were these sunsets that Londoners commented on them repeatedly
in letters, journals, and newspaper articles, which suggests that they likely were
caused by the Tambora aerosol cloud rather than the heavy industrial pollution that
habitually afflicted the city during that era. In fact, scientists have taken advantage
of this effect by using the amount of red in contemporary paintings of sunsets to
estimate the intensity of volcanic eruptions. Several Greek scientists, led by C.
S. Zerefos, digitally measured the amount of red—relative to other primary colors—in
more than 550 samples of landscape art by 181 artists from the sixteenth through the
nineteenth centuries to produce estimates of the amount of volcanic ash in the air
at various times. Paintings from the years following the Tambora eruption used the
most red paint; those after Krakatoa came a close second.
* * *
A MERICANS greeted the year 1816 with confidence and optimism. They had recently concluded two
and a half years of war with Great Britain, arguably the strongest and certainly the
wealthiest nation in the world, and the conflict had ended essentially in a draw.
Admittedly the British had captured and partially burned the nation’s capital, forcing
President Madison and his wife, Dolley, to flee for their lives, accompanied by several
wagons full of White House valuables and Cabinet papers stuffed into trunks. But American
troops led by General Andrew Jackson had ended the fighting on such a positive note
with their overwhelming victory over a numerically superior force of British regulars
at New Orleans in January 1815, that many Americans believed they had actually won
the War of 1812.
European events since that time offered hope that the United States could look forward
to a long period of peace, undisturbed by events abroad. On