The Fabric of the Cosmos: Space, Time, and the Texture of Reality

The Fabric of the Cosmos: Space, Time, and the Texture of Reality Read Online Free PDF

Book: The Fabric of the Cosmos: Space, Time, and the Texture of Reality Read Online Free PDF
Author: Brian Greene
Tags: science, Cosmology, Physics, Astronomy, Popular works, Universe
universe when it was a mere fraction of a second old— requires the use of quantum mechanics. The problem, though, is that when the equations of general relativity commingle with those of quantum mechanics, the result is disastrous. The equations break down entirely, and this prevents us from determining how the universe was born and whether at its birth it realized the conditions necessary to explain time's arrow.
    It's not an overstatement to describe this situation as a theoretician's nightmare: the absence of mathematical tools with which to analyze a vital realm that lies beyond experimental accessibility. And since space and time are so thoroughly entwined with this particular inaccessible realm—the origin of the universe—understanding space and time fully requires us to find equations that can cope with the extreme conditions of huge density, energy, and temperature characteristic of the universe's earliest moments. This is an absolutely essential goal, and one that many physicists believe requires developing a so-called
unified theory.
    Unified Reality
    Over the past few centuries, physicists have sought to consolidate our understanding of the natural world by showing that diverse and apparently distinct phenomena are actually governed by a single set of physical laws. To Einstein, this goal of unification—of explaining the widest array of phenomena with the fewest physical principles—became a lifelong passion. With his two theories of relativity, Einstein united space, time, and gravity. But this success only encouraged him to think bigger. He dreamed of finding a single, all-encompassing framework capable of embracing all of nature's laws; he called that framework a
unified theory.
Although now and then rumors spread that Einstein had found a unified theory, all such claims turned out to be baseless; Einstein's dream went unfulfilled.
    Einstein's focus on a unified theory during the last thirty years of his life distanced him from mainstream physics. Many younger scientists viewed his single-minded search for the grandest of all theories as the ravings of a great man who, in his later years, had turned down the wrong path. But in the decades since Einstein's passing, a growing number of physicists have taken up his unfinished quest. Today, developing a unified theory ranks among the most important problems in theoretical physics.
    For many years, physicists found that the central obstacle to realizing a unified theory was the fundamental conflict between the two major breakthroughs of twentieth-century physics: general relativity and quantum mechanics. Although these two frameworks are typically applied in vastly different realms—general relativity to big things like stars and galaxies, quantum mechanics to small things like molecules and atoms—each theory claims to be universal, to work in all realms. However, as mentioned above, whenever the theories are used in conjunction, their combined equations produce nonsensical answers. For instance, when quantum mechanics is used with general relativity to calculate the probability that some process or other involving gravity will take place, the answer that's often found is not something like a probability of 24 percent or 63 percent or 91 percent; instead, out of the combined mathematics pops an
infinite
probability. That doesn't mean a probability so high that you should put all your money on it because it's a shoo-in. Probabilities bigger than 100 percent are meaningless. Calculations that produce an infinite probability simply show that the combined equations of general relativity and quantum mechanics have gone haywire.
    Scientists have been aware of the tension between general relativity and quantum mechanics for more than half a century, but for a long time relatively few felt compelled to search for a resolution. Instead, most researchers used general relativity solely for analyzing large and massive objects, while reserving quantum mechanics
Read Online Free Pdf

Similar Books

Fashionista

Kat Parrish

Black Rose

Suzanne Steele

Losing Myself in You

Heather C. Myers

FOUND

N.M. Howell

To Be Free

Marie-Ange Langlois

Claiming the Moon

Loribelle Hunt