some 200 years later, this was truly the moment when Greek philosophy began. An underlying order to the cosmos had been observed, and its movements were assumed to be so regular that future events could be predicted from empirical observations gathered over time.
This single instance was not revolutionary in itself—after all, the Egyptians had been able to work out a calendar based on the regular phases of the moon as early as 2800 B.C. Where Thales and his associates in Miletus went further was to speculate on why the world was as it was. They began to ask major questions. What was the cosmos made of, and why did it move in the way it did? Thales himself suggested that the world may have originated in a single substance, water, and that it rested on a base of water. He was challenged by another Milesian, Anaximander. What then did the water rest on? Anaximander suggested that the apparent stability of the world arose because it was at the centre of equally powerful forces—the Boundless, he called them—that surrounded the world on all sides and from which it had been formed. Just as a city would tend towards harmony, so would the cosmos be held in balance by these surrounding forces. Another Milesian, Anaximenes, suggested that everything came from air. If steam could be condensed into water and water could be frozen into ice, it followed that a single substance could change form dramatically, and perhaps air could be condensed into solid forms. These speculations were bound to be primitive, but they did represent a new way of thinking and, moreover, one in which each thinker was able to use observation and reason to challenge his rivals. So within 150 years of Odysseus’ swim to Phaeacia, rational decision-making had been transformed into something much more sophisticated and universal, what we might call science. Thinking about how the predictable rhythms of the natural world related to the observed chaos of the actual world presented, of course, a daunting challenge. But it was faced as early as 500 B.C. The brilliant Heraclitus (from the city of Ephesus, close to Miletus) believed that the underlying order (the word he used was
logos,
which will reappear many times in this book) was sustained by continual tensions between different forces. The harmonious city, said Heraclitus, is not one in which everyone lives in peace but one among whose citizens there is constant activity and debate. “Justice,” said Heraclitus, “is strife.” 9
Heraclitus’ insight that reasoned thought is born within the tensions of the city state is supported by modern research. Geoffrey Lloyd, who has carried out intensive explorations of the background to Greek scientific thinking, traces the origins of a systematic use of reason (without which empirical observations cannot be related to each other) to the intense political debates that raged within the Greek cities. If two factions wished to find a “just” solution to a problem without tearing apart their own city, then at some point there was likely to be a consideration of what was meant by “justice.” There was an incentive to go back to first principles and attempt to define an agreed basis, some kind of axiomatic statement, from which to begin the arguments that could only take place according to rational principles if agreement was to be maintained between the opposing parties. Lloyd argues that this process can be discerned within the fragments of political debate that survive, and, crucially, it was also applied to the study of the natural world. The terminology used supports this. Lloyd shows how a word such as “witness,” as used in the law courts, was the root of the word for “evidence” in scientific discourse, and how the term used for cross-examination of witnesses was adopted to describe the testing of an idea or hypothesis. He also argues that within the city the ability to argue persuasively conferred status, and that this status could be transferred