the magnitude and time course of human H-reflexes in locomotion. J Neurosci 11:420–427.
Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M (2005) DNER acts as a neuron-specific notch ligand during Bergmann glial development. Nat Neurosci 8:873–880.
Ekerot CF, Jörntell H (2001a) Parallel fibre receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2:101–109.
Ekerot CF, Jörntell H (2001b) Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur J Neurosci 13:1303–1310.
Ekerot CF, Jörntell H, Garwicz M (1995) Functional relationship between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res 106:365–376.
Ekerot C-F, Kano M (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res 342:357–360.
Endo S, Nairn AC, Greengard P, Ito M (2003) Thr123 of rat G-substrate contributes to its action as a protein phosphatase inhibitor. Neurosci Res 45:79–89.
Endo S, Shutoh F, Le TD, Okamoto T, Ikeda T, Suzuki M, Kawahara S, Yanagihara D, Sato Y, Yamada K, Sakamoto T, Kirino Y, Hartell NA, Yamaguchi K, Itohara S, Nairn AC, Greengard P, Nagao S, Ito M (2009) Dual involvement of G-substrate in motor learning revealed by gene deletion. PNAS USA 106:3525–3530.
Endo S, Suzuki M, Sumi M, Nairn AC, Morita R, Yamakawa K, Greengard P, Ito M (1999) Molecular identification of human G-substrate, a possible downstream component of the cGMP-dependent protein kinase cascade in cerebellar Purkinje cells. PNAS USA 96:2467–2472.
Englund C, Kowalczyk T, Daza RAM, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184 -9195.
Ethier V, DS Zee, Shadmehr R (2008) Changes in control of saccades during gain adaptation. J Neurosci 28:13929 –13937.
Everling S, Fischer B (1998) The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36:885–899.
Ezure K, Graf W (1984a) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals—I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:85–93.
Ezure K, Graf W (1984b) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals—II. Neuronal networks underlying vestibulo-oculomotor coordination. Neuroscience 12:95–109.
Fadi X, Frazier DT (2000) Respiratory motor output by cerebellar deep nuclei in the rat. J Appl Physiol 89:996–1004.
Fang PC, Stepniewska I, Kaas J, Ispilateral H (2005) Cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otalemur garnetti. J Comp Neurol 490:305–333.
Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol. 22:171–175.
Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, Barski JJ, Meyer M, Konnerth A, De Zeeuw CI, Hofmann F (2003) Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol 163:295–302.
Feldman AG (1986) Once more on the equilibrium-point hypothesis (lambda model) for motor control. J Mot Behav 18:17–54.
Fellows SJ, Ernst J, Schwarz M, Töpper R, Noth J (2001) Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol 112:1793–802.
Fiez JA, Petersen SE, Cheney MK, Raichle ME (1992) Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 115:155–178.
Fiez JA, Raicle ME, Balota DA, Tallal P, Petersen SE (1996) PET activation of posterior temporal