three classes of transition scenarios—scenarios in which systems progress from human-level intelligence to superintelligence—based on their steepness; that is to say, whether they represent a slow, fast, or moderate takeoff.
Slow
A slow takeoff is one that occurs over some long temporal interval, such as decades or centuries. Slow takeoff scenarios offer excellent opportunities forhuman political processes to adapt and respond. Different approaches can be tried and tested in sequence. New experts can be trained and credentialed. Grassroots campaigns can be mobilized by groups that feel they are being disadvantaged by unfolding developments. If it appears that new kinds of secure infrastructure or mass surveillance of AI researchers is needed, such systems could be developed and deployed. Nations fearing an AI arms race would have time to try to negotiate treaties and design enforcement mechanisms. Most preparations undertaken before onset of the slow takeoff would be rendered obsolete as better solutions would gradually become visible in the light of the dawning era.
Fast
A fast takeoff occurs over some short temporal interval, such as minutes, hours, or days. Fast takeoff scenarios offer scant opportunity for humans to deliberate. Nobody need even notice anything unusual before the game is already lost. In a fast takeoff scenario, humanity’s fate essentially depends on preparations previously put in place. At the slowest end of the fast takeoff scenario range, some simple human actions might be possible, analogous to flicking open the “nuclear suitcase”; but any such action would either be elementary or have been planned and pre-programmed in advance.
Moderate
A moderate takeoff is one that occurs over some intermediary temporal interval, such as months or years. Moderate takeoff scenarios give humans some chance to respond but not much time to analyze the situation, to test different approaches, or to solve complicated coordination problems. There is not enough time to develop or deploy new systems (e.g. political systems, surveillance regimes, or computer network security protocols), but extant systems could be applied to the new challenge.
During a slow takeoff, there would be plenty of time for the news to get out. In a moderate takeoff, by contrast, it is possible that developments would be kept secret as they unfold. Knowledge might be restricted to a small group of insiders, as in a covert state-sponsored military research program. Commercial projects, small academic teams, and “nine hackers in a basement” outfits might also be clandestine—though, if the prospect of an intelligence explosion were “on the radar” of state intelligence agencies as a national security priority, then the most promising private projects would seem to have a good chance of being under surveillance. The host state (or a dominant foreign power) would then have the option of nationalizing or shutting down any project that showed signs of commencing takeoff. Fast takeoffs would happen so quickly that there would not be much time for word to get out or for anybody to mount a meaningful reaction if it did. But an outsider might intervene
before
the onset of the takeoff if they believed a particular project to be closing in on success.
Moderate takeoff scenarios could lead to geopolitical, social, and economic turbulence as individuals and groups jockey to position themselves to gain from the unfolding transformation. Such upheaval, should it occur, might impede efforts to orchestrate a well-composed response; alternatively, it might enable solutions more radical than calmer circumstances would permit. For instance, in a moderate takeoff scenario where cheap and capable emulations or other digital minds gradually flood labor markets over a period of years, one could imagine mass protests by laid-off workers pressuring governments to increase unemployment benefits or institute a living wage guarantee to all human citizens,