for the chip, and retranslate the output for display. Crucial to any portable machine was the fact that all this required a power source, and the size of battery required to give a reasonable period of use made the ‘portable’ calculator, independent of mains power, more of a backpack, rather than pocket, proposition.
There was an obvious market waiting for anyone who could produce a true pocket machine, and Sinclair identified this as a new area of endeavour for the Radionics R&D team. Again, the motivation was for a ‘one-per-person’ product. There was no reason why Radionics could not have produced calculators earlier, since they could have competed directly with the first imported versions, but this is not the sort of market that arouses Sinclair’s interest. His miniaturization mania was in this case appropriate to the product, enhancing utility and portability, rather than being a pursuit of smallness as its own justification.
The Radionics advertising manager of the day, Chris Fawkes, recalls Clive’s approach to him with the concept:
At first there was not really much more than an idea to sell. The meeting started by Clive showing us what was basically a drawing on the back of an envelope, of an idea he had had, which was for the Sinclair Executive, a very small calculator. He had this idea for a product, he had a conviction that it would sell in fairly high volume, but in answer to the standard questions as to how are you going to sell it, what sort of volumes are we talking about, and so on, he said, ‘Well, no, you tell me, this is why I’m talking to you.’ (BBC Radio 4, 18 January 1978.)
The Radionics R&D team, mainly Chris Curry and Jim Westwood, managed to package around the Texas Instruments GLS 1802 chip (which itself had some 7000 components built on to it) a circuit of 100 or so other components and the display. The package was of suitable size, but the battery was the problem. Most of the power was needed for the LED (light-emitting diode) display. Whereas the rest of the circuit drew its minimal power requirements only when actually calculating, the display had to be on all the time the calculator was in use. The clever solution was to use the persistence of the display diodes, which did not turn off immediately but continued to glow for what, in the millisecond units of electronics, was a fair while, and a similar persistence in the contents of the chip memory. By turning the power to the display and chip on and off rapidly enough the display would appear constant, and the chip would retain its memory, but power requirements would be minimized. Such a pulsed power supply to the display reduced power requirements by a factor of at least ten.
This crucial breakthrough allowed the calculator to be driven by hearing-aid batteries, and in due course the Sinclair Executive was launched in June 1972. At £79.95, it had not only a low price tag as things were in those days (everything else with the same functions was way above £100), but it was also stylish, lightweight and a genuine breakthrough in size. Its design, or at least its external appearance, won it a place in the Museum of Modern Art in New York, as well as a London Design Centre Award. The aesthetic external case was designed by Richard Torrens. Presumably overriding political scruples with aesthetic considerations, the Czechoslovak Institute of Industrial Design also honoured this quintessentially elitist executive toy. The flexible plastic case was black, the Bowmar LED display was red, and the whole thing was 5 by 2 inches and the same thickness ‘as a cigarette packet’. The latter point was presumably of significance to Sinclair, who was a heavy smoker of Capstan Full Strength in pre-marathon days.
The Executive was a great success among those who could afford it. The advertising agency Primary Contact produced sophisticated ads in up-market magazines, and Harrods stocked it. The profit margin was high, even with a product
Rick Bundschuh, Cheri Hamilton