academic pyramid as rapidly as his abilities warranted. In 1669, when Newton was twenty-six, his former teacher Isaac Barrow resigned the Lucasian Professorship of Mathematics in his favor, and from that point on he was set. The chair was his for as long as he chose to keep it. It provided him with room, board, and about one hundred pounds a yearâplenty for an unmarried man with virtually no living expenses. In return, all he had to do was deliver one course of lectures every three terms. Even that duty did not impinge much on his time. Humphrey Newton reported that the professor would speak for as much as half an hour if anyone actually showed up, but that "oftimes he did in a manner, for want of Hearers, read to y e Walls."
Aside from such minimal nods toward the instruction of the young, Newton did as he pleased. He loathed distractions, had little gift for casual talk, and entertained few visitors. He gave virtually all his waking hours to his research. Humphrey Newton again: "I never knew him [to] take any Recreation or Pastime, either in riding out to take air, Walking, bowling, or any other Exercise whatever, Thinking all Hours lost, that was not spent in his Studyes." He seemed offended by the demands of his body. Humphrey reported that Newton "grudg'd that short Time he spent in eating & sleeping"; that his housekeeper would find "both Dinner & Supper scarcely tasted of"; that "He very seldom sat by the fire in his Chamber, excepting that long frosty winter, which made him creep to it against his will." His one diversion was his garden, a small plot on Trinity's grounds, "which was never out of Order, in which he would, at some seldom Times, take a short Walk or two, not enduring to see a weed in it." That was itâa life wholly committed to his studies, except for a very occasional conversation with a handful of acquaintances and a few stolen minutes pulling weeds.
But work to what end? Year after year, he published next to nothing, and he had almost no discernible impact on his contemporaries. As Richard Westfall put it: "Had Newton died in 1684 and his papers survived, we would know from them that a genius had lived. Instead of hailing him as a figure who had shaped the modern intellect, however, we would at most...[lament] his failure to reach fulfillment."
And then, one August day in 1684, Edmond Halley stopped by. Halley was one of that handful of acquaintances who could always gain admittance to Newton's rooms in Trinity. The pair had met two years earlier, just after Halley's return from France, where he'd meticulously observed the comet that would later be named for him. Newton had made his own sketches of the comet, and he welcomed a fellow enthusiast into the circle of those whose letters he would answer, whose conversation he welcomed.
Today Halley brought no pressing scientific news. He had come down from London to the countryside near Cambridge on family business, and his visit to Newton was merely social. But in the course of their conversation, Halley recalled a technical point he had been meaning to take up with his friend.
Halley's request had seemed trivial enough. Would Isaac Newton please settle a bet? The previous January, Halley, Robert Hooke, and the architect Sir Christopher Wren had talked on after a meeting of the Royal Society. Wren wondered if it was true that the motion of the planets obeyed an inverse square law of gravityâthe same inverse square relationship that Newton had investigated during the plague years. Halley readily confessed that he could not solve the problem, but Hooke had boasted that he had already proved that the inverse square law held true, and "that upon that principle all the Laws of the celestiall motions were to be demonstrated."
When pressed, though, Hooke refused to reveal his results, and Wren openly doubted his claim. Wren knew how tricky the question was. Seven years before, Isaac Newton had visited him in his London home, where the two men
Monika Zgustová, Matthew Tree