Illustrated Theory of Everything: The Origin and Fate of the Universe
One was that it was composed of particles; the other was that itwas made of waves. We now know that really both theories are correct. By thewave/particle duality of quantum mechanics, light can be regarded as both awave and a particle. Under the theory that light was made up of waves, it wasnot clear how it would respond to gravity. But if light were composed of parti-cles, one might expect them to be affected by gravity in the same way thatcannonballs, rockets, and planets are.
On this assumption, a Cambridge don, John Michell, wrote a paper in 1783in the Philosophical Transactions of the Royal Society of London. In it, he point-ed out that a star that was sufficiently massive and compact would have sucha strong gravitational field that light could not escape. Any light emittedfrom the surface of the star would be dragged back by the star’s gravitationalattraction before it could get very far. Michell suggested that there might bea large number of stars like this. Although we would not be able to see thembecause the light from them would not reach us, we would still feel their grav-itational attraction. Such objects are what we now call black holes, becausethat is what they are-black voids in space.
A similar suggestion was made a few years later by the French scientist theMarquis de Laplace, apparently independently of Michell. Interestinglyenough, he included it in only the first and second editions of his book, TheSystem of the World, and left it out of later editions; perhaps he decided that itwas a crazy idea. In fact, it is not really consistent to treat light like cannon-balls in Newton’s theory of gravity because the speed of light is fixed. A can-nonball fired upward from the Earth will be slowed down by gravity and willeventually stop and fall back. A photon, however, must continue upward at aconstant speed. How, then, can Newtonian gravity affect light? A consistenttheory of how gravity affects light did not come until Einstein proposed gen-eral relativity in 1915; and even then it was a long time before the implica-tions of the theory for massive stars were worked out.
To understand how a black hole might be formed, we first need an understand-ing of the life cycle of a star. A star is formed when a large amount of gas, most-ly hydrogen, starts to collapse in on itself due to its gravitational attraction. Asit contracts, the atoms of the gas collide with each other more and more fre-quently and at greater and greater speeds-the gas heats up. Eventually the gaswill be so hot that when the hydrogen atoms collide they no longer bounce offeach other but instead merge with each other to form helium atoms. The heatreleased in this reaction, which is like a controlled hydrogen bomb, is whatmakes the stars shine. This additional heat also increases the pressure of thegas until it is sufficient to balance the gravitational attraction, and the gasstops contracting. It is a bit like a balloon where there is a balance between thepressure of the air inside, which is trying to make the balloon expand, and thetension in the rubber, which is trying to make the balloon smaller.
The stars will remain stable like this for a long time, with the heat from thenuclear reactions balancing the gravitational attraction. Eventually, however,the star will run out of its hydrogen and other nuclear fuels. And paradoxical-ly, the more fuel a star starts off with, the sooner it runs out. This is becausethe more massive the star is, the hotter it needs to be to balance its gravita-tional attraction. And the hotter it is, the faster it will use up its fuel. Our sunhas probably got enough fuel for another five thousand million years or so, butmore massive stars can use up their fuel in as little as one hundred millionyears, much less than the age of the universe. When the star runs out of fuel,it will start to cool off and so to contract. What might happen to it then wasonly first understood at the end of the 1920s.
In 1928 an Indian graduate
Read Online Free Pdf

Similar Books

League of Strays

L. B. Schulman

Wicked End

Bella Jeanisse

Firebrand

P. K. Eden

Angel Mine

Sherryl Woods

Duncan

Teresa Gabelman

No Good to Cry

Andrew Lanh

Devil’s Kiss

Zoe Archer

Songs From the Stars

Norman Spinrad