angle. Conversely if you have a triangle which obeys Pythagorasâ theorem, then you can be absolutely confident that it is a right-angled triangle.
At this point it is important to note that, although this theorem will forever be associated with Pythagoras, it was actually used by the Chinese and the Babylonians one thousand years before. However, these cultures did not know that the theorem was true for every right-angled triangle. It was certainly true for the triangles they tested, but they had no way of showing that it was true for all the right-angled triangles which they had not tested. The reason for Pythagorasâ claim to the theorem is that it was he who first demonstrated its universal truth.
But how did Pythagoras know that his theorem is true for every right-angled triangle? He could not hope to test the infinite variety of right-angled triangles, and yet he could still be one hundred per cent sure of the theoremâs absolute truth. The reason for his confidence lies in the concept of mathematical proof. The search for a mathematical proof is the search for a knowledge which is more absolute than the knowledge accumulated by any other discipline. The desire for ultimate truth via the method of proof is what has driven mathematicians for the last two and a half thousand years.
Absolute Proof
The story of Fermatâs Last Theorem revolves around the search for a missing proof. Mathematical proof is far more powerful and rigorous than the concept of proof we casually use in our everyday language, or even the concept of proof as understood by physicists or chemists. The difference between scientific and mathematical proof is both subtle and profound, and is crucial to understanding the work of every mathematician since Pythagoras.
The idea of a classic mathematical proof is to begin with a series of axioms, statements which can be assumed to be true or which are self-evidently true. Then by arguing logically, step by step, it is possible to arrive at a conclusion. If the axioms are correct and the logic is flawless, then the conclusion will be undeniable. This conclusion is the theorem.
Mathematical theorems rely on this logical process and once proven are true until the end of time. Mathematical proofs are absolute. To appreciate the value of such proofs they should be compared with their poor relation, the scientific proof. In science a hypothesis is put forward to explain a physical phenomenon. Ifobservations of the phenomenon compare well with the hypothesis, this becomes evidence in favour of it. Furthermore, the hypothesis should not merely describe a known phenomenon, but predict the results of other phenomena. Experiments may be performed to test the predictive power of the hypothesis, and if it continues to be successful then this is even more evidence to back the hypothesis. Eventually the amount of evidence may be overwhelming and the hypothesis becomes accepted as a scientific theory.
However, the scientific theory can never be proved to the same absolute level of a mathematical theorem: it is merely considered highly likely based on the evidence available. So-called scientific proof relies on observation and perception, both of which are fallible and provide only approximations to the truth. As Bertrand Russell pointed out: âAlthough this may seem a paradox, all exact science is dominated by the idea of approximation.â Even the most widely accepted scientific âproofsâ always have a small element of doubt in them. Sometimes this doubt diminishes, although it never disappears completely, while on other occasions the proof is ultimately shown to be wrong. This weakness in scientific proof leads to scientific revolutions in which one theory which was assumed to be correct is replaced with another theory, which may be merely a refinement of the original theory, or which may be a complete contradiction.
For example, the search for the fundamental particles of matter
Leighann Dobbs, Emely Chase