"mass" there is—really were parts of a single connected whole.
Lavoisier had demonstrated his romanticism in 1771 by rescuing the innocent thirteen-year-old daughter of his friend Jacques Paulze from a forced marriage to an uncouth, gloomy—yet immensely rich—ogre of a man. The reason he knew Paulze well enough to do the good deed for the daughter, Marie Anne, was that Paulze was his boss. The way he rescued Marie Anne was to marry her himself.
It turned out to be a good marriage, despite the difference in age, and despite the fact that soon after the handsome twenty-eight-year-old Lavoisier rescued Marie Anne, he shifted back to being immersed in the stupendously boring accountancy work he did for Paulze, within the organization called the "General Farm."
This was not a real farm, but rather an organization with a near monopoly on collecting taxes for Louis XVI's government. Anything extra, the Farm's owners could keep for themselves. It was exceptionally lucrative, but also exceptionally corrupt, and for years had attracted old men wealthy enough to buy their way in, but unable to do any detailed accounting or administration. It was Lavoisier's job to keep this vast tax-churning device in operation.
He did that, head down, working long hours, six days a week on average for the next twenty years. Only in his spare time—an hour or two in the morning, and then one full day each week—did he focus on his science. But he called that single day his "jour de bonheur"—his "day of happiness."
Perhaps not everyone would comprehend why this was such a "bonheur." The experiments often resembled Lavoisier's ordinary accounting, only dragged out even longer. Yet the moment came when Antoine, in that irrational exuberance young lovers are known for, said his bride could now help him with a truly major experiment. He was going to watch a piece of metal slowly burn, or maybe just rust. He wanted to find out whether it would weigh more or less than it did before.
(Before going on, the reader might wish to actually guess: Let a piece of metal rust—think of an old fender or underbody panel on your car—and it ends up weighing
a)less
b) the same
c) more
than it did before. Remember your answer.)
Most people, even today, probably would say it would weigh less. But Lavoisier, ever the cool accountant, took nothing on trust. He built an entirely closed apparatus, and he set it up in a special drawing room of his house. His young wife helped him: she was better at mechanical drawing than he was, and a lot better at English. (This would later be useful in keeping up with what the competition across the Channel was doing.)
They put various substances in their drawing room apparatus, sealed it tight, and applied heat or started an actual burn to speed up the rusting. Once everything had cooled down, they took out the mangled or rusty or otherwise burned-up metal and weighed it, and also carefully measured how much air may have been lost.
Each time they got the same result. What they found, in modern terms, was that a rusted sample does not weigh less. It doesn't even weigh the same. It weighs more.
This was unexpected. The additional weight was not from dust or metal shards left around in the weighing apparatus—he and his wife had been very careful. Rather, air has parts: there are different gases within the vapor we breathe. Some of the gases must have flown down and stuck to the metal. That was the extra weight he had found.
What was really happening? There was the same amount of stuff overall, yet now the oxygen that had been in the gases floating above was no longer in the air. But it had not disappeared. It had simply stuck on to the metal. Measure the air, and you would see it had lost some weight. Measure the chunk of metal, and you would see it had been enhanced—by exactly that same amount of weight the air had lost.
With his fussily meticulous weighing machine, Lavoisier had shown that matter can move around